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Dynamical coupling and energy transfer in weakly 
bound molecular complexes-/- 

by F. A. GIANTURCO 
Department of Chemistry, University of Rome, Citta Universitaria, 00185 Rome, Italy 

G. DELGADO-BARRIO, 0. RONCERO and P. VILLARREAL 
Instituto de Estructura de la Materia, CSIC, 

Serrano 123, 28006 Madrid, Spain 

The existence of a special type of bound state supported by chemical forces of a 
different nature from those involved in traditional chemical bonds has been 
predicted by theory and confirmed by experiment. It is, however, only in the last 
decade or so that Van der Waals complexes have acquired great relevance as model 
systems for the study of energy flow and energy deposition during intramolecular 
inelastic processes. In the present analysis it is shown how even the simple event 
where energy is exchanged only between internal rotation and the vibrational 
motion along the Van der Waals (VdW) bond can lend itself to a very detailed and 
systematic study of the origin of the dominant dynamical couplings which drive the 
inelastic rearrangements. A computational example is given at the end for the case of 
argon and molecular nitrogen, as partners moving under the effect of a realistic 
interaction potential determined from several experimental data. 

1. Introduction 
The study of the structural properties of weakly interacting systems in the gas phase 

is possibly one of the best sources of information on the role that the various 
intermolecular forces play in guiding the relative distribution of the energy available in 
the thermal bath between the internal degrees of freedom of the molecular species. 

When a traditional chemical bond is formed one knows that, at  the temperatures of 
chemical interest, quite a large amount of energy will be needed to break it, and the 
ensuing fragments may tell us little about the internal energy distribution of the bound 
system before such a major perturbation occurred. On the other hand, when a weakly 
bound cluster of molecules is examined or when other types of Van der Waals (VdW) 
systems are studied, one is dealing with much weaker forces and therefore the amount 
of energy ‘stored’ in each of these bonds frequently becomes comparable with the 
amount of internal energy that may exist in other parts of the monomer. As a 
consequence of this, the weakly-bound clusters can undergo dissociation simply by 
internal redistribution of fairly small amounts of energy. The complex can therefore 
predissociate and the resultant reduction in the lifetime of the particular excited state 
which has been formed leads to observable broadening of the corresponding 
spectroscopic lines (Levy 1981, Le Roy and Carley 1980). This particular form of 
predissociation can be viewed as a simple unimolecular reaction alongthe VdW bond, 
with the cluster of molecules representing a sort of ‘activated’ system that is capable of 
fragmenting to yield products with several different possible internal states. This aspect 

t This contribution is dedicated to the memory of Professor M. Simonetta. 
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2 F.  A.  Gianturco et al. 

of the process is therefore directly related to the various features of the multi- 
dimensional potential energy surface (PES) which is driving the motion of the nuclei 
and which is added locally to the relative kinetic energy of the partners at  each 
geometry of the cluster. It also means that the individual probabilities for each of the 
final channels to be populated during the predissociative break-up are ultimately 
related to the coupling potentials which act, while the complex is not too far from its 
equilibrium geometry, between the motion along the dissociative coordinate (i.e. the 
VdW bond) and the internal motion of all the other atoms which pertain to the 
component ‘monomers’ (Le Roy and Van Kranendonk 1974). 

An interesting aspect of the physical situation is that the resonant nature of the 
break-up process is also very reminiscent of what happens when a molecule, or an 
atom, collides with another molecule at very small relative kinetic energy, and 
translational energy can therefore be deposited into the internal degrees of freedom of 
either partner as a result of the dynamical coupling that takes place during the 
encounters. In this special sense, therefore, the predissociative properties of weakly 
bound clusters could be studied theoretically by treating them as ‘half collision’ 
processes, i.e. by applying the usual asymptotic boundary conditions for the total 
wavefunction of a scattering state only to the final channels of the system, while the 
initial channels are treated as bound states of the complex, having negative total energy 
with respect to each suitable set of isolated fragments. As a consequence of this 
approach, what is known about the relative efficiency of rotationally and/or 
vibrationally inelastic scattering processes between certain molecular partners (Faubel 
1983, Gianturco and Palma 1985 b) becomes the basis for the analysis of the structural 
properties of the weakly bound systems that are made up of the same components as 
the scattering partners above. 

We consider first the ways by which one can gather information on intermolecular 
forces between partners in the cluster and then describe the dynamical models which 
can be employed to deal with the relative motion of the partners. Possible, simpler 
quanta1 treatments of the outgoing scattering states are then described in detail and, in 
the last section, results on a specific example are reported and analysed. 

2. The interaction potentials 
Considerable progress has been made in recent years in determining accurate 

potential energy surfaces for two- and three-atom systems (Scoles 1980). The usual 
procedure has been the supermolecule approach, whereby the interaction energy of a 
complex is obtained by evaluating the total energy E i B  of the AB supermolecule via a 
specific method x (x = SCF, CI, CEPA, MBPT etc.) and then subtracting the energy of 
the monomers. 

AEx = E& - E i  - Eg (1)  
The difficulty with this approach arises from the errors inherent in the subtraction of. 
the large energies of the separate fragments from the only lightly different energy of the 
interacting components of the supermolecule (Morokuma 1977). Several authors have 
resorted instead to model calculations in which the long-range regio? of zero overlap of 
the charge distributions turns out to be sufficiently well described by second-order 
perturbation calculations, while at short range the first-order Coulomb and exchange 
energies dominate the interaction and can be reliably treated by SCF calculations. The 
difficult intermediate region is finally described by general damping functions which 
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Dynamical rotational predissociation 3 

simply connect the two main domains of interaction at each relative orientation of the 
partners (Tang and Toennies 1978, Ahirichs et al. 1977). 

In recent years, we have found it very effective to analyse several data obtained, for 
example, from molecular beam scattering experiments, from the spectroscopy of the 
bound states of the supermolecule, from bulk data like virial coefficients and transport 
properties, and to try to fit all these available quantities with one simple form of 
anisotropic potential (Gianturco et a/.  1982, 1983, 1984, 1985 a, b). This type of multi- 
property analysis has the interesting advantage of allowing close interplay between the 
separate theoretical models employed to generate the required observable and 
corresponding form of that region of the full PES which is mostly responsible for its 
behaviour. For instance, one can associate very directly the values of the diffusion and 
viscosity coefficients produced by a given anisotropic potential over a wide range of 
temperature for a specific gaseous mixture (e.g. He + N, or Ar + 0,) with the shape of 
the effective, spherical potential at the onset of its repulsive region and with the location 
in space of that repulsive wall (Gianturco and Venanzi 1987). Furthermore, the 
interference oscillation observed experimentally in the differential cross sections, total 
and partial, at low collision energies (20 meV d E < 100 meV) can be interpreted and 
reproduced only when the relative position, depth and orientational dependence of the 
attractive well is established with a rather high level of accuracy (for example Gianturco 
and Palma (1985)). An indirect test on the reliability of such an approach was carried 
out through the analysis of experimental data on Ar-0, mixtures, where measured 
partial inelastic differential cross-sections were able to indicate in which direction one 
should modify the well anisotropy and long-range anisotropy obtained. from integral 
cross-sections in order to reproduce the observed angular distributions of the inelastic 
processes (Faubel and Kraft 1986). 

The infra-red spectra of the corresponding Ar-N, complexes seem to indicate that 
these VdW molecules possess orientationally localized (librational) states as well as 
nearly free internal rotation states (Henderson and Ewing 1974), and therefore such 
partners provide a system on which the dynamical coupling between different internal 
motions, and the corresponding flow of energy between them that can occur during the 
motion, can be analysed. 

It is important to keep in mind that the object of the present study is to clarify 
structures, i.e. to assess the relative mobility of the various fragment nuclei within a 
VdW complex, a property which varies considerably as the various partners are 
changed. One observes, for instance, at one end the nearly free internal rotation of H, in 
H,-X dimers, which are thus best described by using a basis of free rotor functions for 
both the potential and the vibrational wavefunctions (Le Roy and Carley 1980), while 
at the other end one could observe VdW complexes in which the partner molecule is 
strongly nonspherical and of such dimensions as to be, along one or two ofthem, larger 
than the main VdW coordinate with the rare gas; internal rotations are then strongly 
prevented as at  specific angles (and/or distances) the full potential surface could even 
become infinitely repulsive. This behaviour has been found to hold for systems like 
anthracene-Ar or fluorene-Ar (Meerts et al. 1984), where onp has to use a different set 
of internal coordinates and basis functions for the internal motion. 

For all the intermediate situations it becomes necessary to select the most effective 
representation of the states of the complex and/or of the monomer in order to obtain a 
simple and reliable picture of the dynamical coupling that occurs between the nuclear 
motions controlled by the strong chemical bonds existing within each monomer and 
the overall nuclear motion that depends on the new VdW bond. 
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4 F.  A .  Gianturco et al. 

3. The dynamical models 
3.1. System hamiltonian 

We confine this study to the theory of bound triatomic molecules. The six 
independent variables of the ABC system in the centre-of-mass.(c.m.) frame are chosen 
as R, r,  y ,  4R, 8, and 4,.. The vector R defines the A to BC c.m. separation (or VdW 
coordinate), r the B to C separation (or molecular coordinate) and y is the angle 
between these two vectors. The remaining variables are Euler angles of rotation, with 
(4R, 8,) defining the orientation of R relative to a space fixed (SF) coordinate system 
and &, the rotation of the ABC triangle about R. 

By making use of the above coordinates we can write the ABC hamiltonian, in a.u., 
in the following way: 

where p is the triatomic reduced mass, m the reduced mass of the diatomic fragment, I' 
is the orbital and j2 the internal angular momentum operators squared and I/ is the full 
PES for all internal coordinates. In the case of a rigid, rotating diatomic partner BC, the 
needed hamiltonian and PES are further reduced as follows: 

(3) 
I a2 12 1 a 2  

S'(R,?)= ---+- + B,j2 + V(R, y )  = --7+ U(R,  y )  
2paR2 2pR2 2p 8R 

where Be is now the rotational constant for the diatom BC. The problem we wish to 
solve is the eigenvalue equation 

( E i - X ( R ,  ?))'P(EiIR,?)=O (4) 
where both discrete and continuum eigenvalues need to be considered. To simplify (4) 
one usually works in the total J2 representation, where 

J = j + l  (5 )  

(6) 

which then allows one to write down the orbital angular momentum squared as 

12=(J-j)2= J2 +j2-2QZ-2J; j,-2JY- j, 

where R and 9 (mutual perpendicular) are body fixed (BF) directions orthogonal to f?. 
The helicity operator L! is defined as 

f i ~ f ? .  J = f . j  (7) 

The eigenfunctions of 2 in the helicity (BF) representation can now be written as 

where /z and M are the eigenvalues of Q and J,, respectively, and 9iM are rotation 
matrices (see for example Gianturco (1979)). It is worth mentioning at this point that 
the centrifugal sudden (CS) (McGuire and Kouri 1974) or the helicity decoupling 
approximation (HDA) (Tamir and Shapiro 1975) amount to neglecting the last two 
terms in equation (6), i.e. 
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Dynamical rotational predissociation 5 

However, if this approximation is not introduced, the use of expansion (8) into equation 
(4) leads to the well-known set of coupled equations of collision theory: 

+ U(a', a', J(R)-  E: . f (EJ ,  J ,  a'lR) = -c U(a', a", JIR) f (EJ ,  J ,  a"lR) (10) 
n" 

1 d2 

where U are the matrix elements of the internal motion (angular) functions with the 
operator U ( R ,  y) of equation (3). In either the SF or the B F  angular basis, the coupling 
matrix elements are defined for each IJ) state of the triatomic complex and the 
rotational predissociation (RP) processes can be fully discussed in terms of the 
solutions of equation (10).For the case in which the predissociating state of the VdW 
complex can be treated as an isolated narrow resonance, associated with a specific 
closed channel m, then one can make use of the full S-matrix obtained by solving 
equation (10) and write down the matrix element between the open channelsj and j' as 
follows (Ashton et al. 1983): 

Sj j , (E)  = [S,(E)ljf - i gmjgmj./(E - Em + irm/2)  (1 1) 

where Em is the energy of the resonance, r,its total width, and gmj is a complex number 
which is related to a partial width Tmi= Igmj(' that determines the flux of dissociation 
products into the specific channel j .  [S,(E)ljY represents a contribution to the S-matrix 
element that varies slowly with energy and is due to direct break-up without involving 
channel m. One can then characterize a given predissociation level by performing close- 
coupling scattering calculations for a suitable range of energies surrounding the 
expected resonance position, and by determining the resonance parameters by 
simultaneous least-square fits of the resulting S-matrix elements to the form of equation 
(1 1). The quality'of the ensuing fit therefore provides a measure of the validity of the 
narrow resonance approximation and of the accuracy achieved in the convergence of 
the coupled solution of equation (10). 

Because of the numerical complexity and size of equation (10) which may need to be 
solved at  several energies in order to follow the above procedure, it has been much more 
common to resort first to approximate methods to treat the dynamical coupling and 
then to test them; if possible, against some specific resonance positions obtained 
through the more general and 'exact' CC procedure. 

3.2. Approximate procedures 
The most common way to reduce the computational efforts implied by equation 

(10) has always been to find a suitable partition of the full hamiltonian (Le Roy 1984). 
The first of these parts, say X0, usually provides a zeroth order description of the 
dynamics of the system and therefore its eigenvalues constitute estimates of the energies 
of all the needed bound and metastable states. The remainder of the original 
hamiltonian, usually called X' = X -  Ho, is then employed to couple the discrete 
eigenfunctions associated with the metastable levels of Po to some isoenergetic 
continuum open channels that lead to predissociation. One can then easily see that, 
within the isolated narrow resonance approximation, the corresponding partial width 
(full width at halfmaximum) that describes the predissociation of the metastable state m 
into a specific open channel j is given by the familiar golden rule expression: 
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6 F.  A .  Gianturco et al. 

where Ym is the unit-normalized, bound-state eigenfunction of X 0  associated with the 
complex state that is undergoing break-up and 'Pc describes the isoenergetic continuum 
function of Z0 associated with the final, open channel l j }  of the two fragments. 

To help our discussion of expansions in the following paragraphs, let us think of the 
full interaction V(R,y) as being made up of three terms 

the first part being the spherical component of the potential, the second its angular 
dependence and the third the coupling between the two motions in the complex. One 
can then say that the different parts of the full potential (13) may have different 
importance, depending on the system, and therefore the corresponding expansion 
problem may lend itself to a different choice of basis functions, depending on which is 
the dominant contribution in partition (1 3).  

3.3. Diabatic expansions 
In this approach, which is usually considered to be the simplest, one essentially 

disregards the coupling effect of V3 in equation (13) and the problem becomes 
separable. The corresponding total wavefunction could then be written as the product 
of two functions, one which depends only on R and the other only on the orientation y 
(libration variable). This product can be further improved by replacing it with full 
expansion of a complete set of still separable functions. Both possibilities are discussed 
below. 

3.3.1. Diabatic rotational expansion (DRE) 
This approach was proposed a while ago (Beswick and Requeiia 1980) but has only 

recently been applied to realistic systems (Roncero et al. 1986, Villarreal et af .  1987 a, b). 
The total wavefunction is written as a product of two subfunctions which each depend 
on one of the variables of the problem 

where J and M are the quantum numbers defined before, p is the parity index: 
p = ( -)**(J + j + 1). The indices c i  and u, refer to the quantum numbers associated with 
the angular (bending) and radial (stretching) motion within the complex. The function 
@ belongs to a complete orthonormal set of angular basis functions defined in either the 
BF or SF frame of reference. Because of the presence of only one set of channel indices 
then the radial function x is the solution of a one-dimensional, decoupled equation in 
which an effective potential appears 

where the V,,, is defined by averaging over the angular function dD 
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Dynamical rotational predissociation 7 

To solve equation (15) to obtain both bound and metastable eigenfunctions means that 
all diagonal matrix elements U(a’, a“, JIR) of equation (10) are considered negligible 
with respect to the diagonal element of equation (16), hence no coupling exists between 
the various bound and metastable states through the mixing of R-motion and y-motion 
within the complex. When this is not the case, one then obtains inaccurate estimates of 
the E,  values and of their corresponding r,, since the angular coupling will only appear 
in the golden rule expression of equation (15) and not when obtaining the 
wavefunctions of expansion (14). One further step could thus be made by employing all 
the separate solutions of equation ( 1  5 )  to generate the full wavefunction of the complex. 

3.3.2. DR expansion plus configuration interaction (DRCIE)  
When the systems under study appear to support several bound and metastable 

states, it could be convenient to retain the diabatic separation of variables but to 
improve its representation by allowing the interaction between the states in question to 
be switched on. Thus, from equation (14) 

e M p ( R ,  f )=  1 C:,”J::JR)@hMP (Y) (17) 
a, uF1 

where the summation extends over all the bound states supported by each Veff 
potential, as defined in equation (16). The functions on the r.h.s. of equation (17) can be 
used to construct a matrix representation of the hamiltonian (13) 

) uua;m’uzr = ( ~ : f \ ~ \ y i ~ t r )  = Eu, uor * . auwua,  + Xa, J P  vcr~ Vaa’,Jp eff I Xa, ,  J P  uorr (1 - am,) (18) H J M P  ( 
By diagonalization of the full matrix one can obtain new eigenvalues En and eigenstates 
In) for the complex system. In some cases this turns out to be of very limited help, 
because each effective potential supports only a small number of discrete levels, and it 
does so only for the lower-lying rotational levels of the diatom, Hence the CI correction 
is only a small effect and all the limitations of the DR expansion are still present 
(Villarreal et al. 1987 a, b). 

3.3.3. Diabatic stretching expansion (DSE) 
Because of the complete separation between vibrational and librational motions 

implied by the diabatic expansions it becomes only a matter of expediency to decide 
which variable should be averaged out first. Thus, one could also consider the 
possibility of producing the total wavefunction from the expansion 

% , Y p >  9 = @ z : ( Y )  Xu(R) (19) 
where the angular functions are obtained for each u-channel by solving an equation 
which is averaged over the stretching functions, each of which is in turn a solution of the 
eigenvalue equation 

where the spherical part of the full PES is explicitly used to obtain the zerothrorder 
stretching functions. Thus we can write the ensuing equation, with the X-averaged 
hamiltonian, for each stretching channel v 
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8 F. A.  Gianturco et al. 

One could then solve equation (21) by expanding the functions over a chosen set of 
orthonormal angular basis functions (e.g. those obtained in the expansion (1 7)). The 
above procedure includes more accurately the angular coupling than the previous 
expansion over angle-averaged eigenfunctions, but its final performance in correctly 
generating R P  energies and widths strongly depends on the reliability of the x 
functions: for a mildly anisotropic PES, the eigensolutions of equation (20) constitute a 
very good starting point for describing stretching motion, and therefore the angular 
basis will likewise be satisfactory. On the other hand, when the E ,  are very different 
from the correct stretching eigenvalues, then the complete wavefunctions will also fare 
poorly in the angular variable and in its description of librational motion. 

3.3.4. D S  plus conjiguration interaction ( D S C I E )  
The most direct and simple improvement over the approximate expansion of before 

is again given by correcting for the potential coupling between diabatic states and 
therefore by modifying equation (19) as follows 

yiMp(R = 1 C . a u  @ir;2:(~) xAR) (22) 
U,U" 

which produces, as in the case of DRCIE of equation (18), the following representation 
of the full hamiltonian 

U , a V  * dcu,  * dz, zi.f + (@iEpI uuo,l@iy:(l - duo,) (23) f M P  2 Y f M P )  = E Hizg*aL.,= ( y v , a u  I I u,av 

where the angle-dependent potential is written as 

and the xv  are obviously solutions of the radial equation (20) for the spherical 
component of the interaction. The coupling between diabatic levels that is brought in 
by the UUUr potential terms of equation (23) will modify the wavefunctions and 
eigenvalues of equation (21) only if several bound states are supported by the spherical 
potential or/and by the angular potentials of equation (24). 

3.4. Adiabatic expansions 
In cases where the drastic separation implied by the previous expansions is not a 

very realistic description of internal motion within a VdW molecule it appears more 
reasonable to think of the total wavefunctions for the discrete and metastable states of 
the complex as given by the product of a function which depends on only one of the 
variables, be it either the stretching or the bending variable, and another function 
which depends only weakly on that variable and more markedly on the others. This 
approach simply tries to take advantage of the physical differences which exist between 
fast-motion variables and slow-motion variables (Segev and Shapiro 1985, Villarreal 
et al. 1987 b). In the following paragraphs we briefly review the models which can be 
used to exploit the adiabatic separation of motions in treating dynamical coupling 
within VdW complexes. 

3.4.1. Adiabatic angular expansion ( A A E )  

which only weakly depends on orientation and a purely angular function. 
One begins by writing the total wavefunction as a product of a radial function 
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Dynamical rotational predissociation 9 

The discrete eigenfunctions now depend on the quantum numbers s and 1, associated 
with the VdW stretching and librational motions respectively. If one now assumes that 
the weak y-dependence in the 4, functions can be disregarded then one can write 

which means that one can now obtain the 4s functions as solutions of uncoupled one- 
dimensional equations for each y value chosen at an arbitrary value: 

The full equation will then yield, after simple substitutions, the corresponding solutions 
for the F functions 

{ - ~ C A ~ N .  121 + + W,N F ,  A?) = E ~ ,  P ~ ,  I ( y )  (28) I 
where 

AsW= (4s(~;~) l l /~214s(R;y))  (29) 

CP,Ql=PQ+QP (30) 

and 

A standard way of solving equation (28) is to expand the F functions over a BF 
rotational basis set (Pack 1974) 

Fs, I (Y)  = F ,  I ( R  r̂ ) . 

where the coefficients on the r.h.s. are well known products of spherical harmonics and 
Wigner D-matrices (Rose 1957). The representation of the 1’ and j’ operators in the BF 
frame is also well known from the literature (Gianturco 1979) and therefore the A,  and 
W, functions can also be given in terms of Legendre polynomial expansions to yield 
finally, by diagonalization of the coupled equations which stem from (28), the desired 
energies of the triatomic system and the corresponding wavefunctions via the 
knowledge of the coefficients in equation (31). 

3.4.2. A A  plus configuration interaction (AACIE) 
One can improve on the previous representation of discrete solutions for the 

eigenstates of the triatomic complex by allowing for the full potential to couple the 
separate solutions of equation (25). This implies 

Y 

YkP, r̂ ) =c a:,4r(R YY,, I (Y)  (32) 
s, 1 

hence the usual Schrodinger equation 

%( R, r̂ ) Yk( R, ?) = &Yk( R, ?) (33) 
may be solved by representing the full hamiltonian &‘ in that basis and by then 
diagonalizing the corresponding matrix. A typical element of that matrix can therefore 
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10 F.  A .  Gianturco et al. 

If the eigenvalues of equation (27) and its eigensolutions are written as an expansion 
over Legendre polynomials, then 

where the case of an homonuclear diatomic fragment has been considered in equation 
(35 a). One can now obtain more explicitly all the terms appearing in equation (34) by 
first rewriting the elements of the basis of the expansion (32) as 

M R ;  Y )  Fs, 1(Y)= c 4 ( R )  c;i c ( ~ 2j+ ‘)”’C(jkp; QOQ) C(jkp;OOO)(R ,̂ P^(JMpQ) (36) 
k jn fi 2 p + l  

as was earlier derived in more detail (Villarreal et al. 1987 b). Thus one can write 

and 

x C(jkp; 000) x C( j’k‘p; QOQ) x C(j’k‘p; OOO)p( p + 1) (38) I 
where PECPrnin, P m a x l  and 

Pmin = max (ik - ji; Ik’ - j’l) 
P,,, = min (k + j; k’ +I). 

Finally, the last term on the r.h.s. of (34) can be rewritten as 

x C( jkp; QOQ) C( jkp; 000) x C( j’k’p; U O U )  

(39) 

x C(j’k‘p; O00)(JMpfll12~.JMpQ’>] (40) 
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Dynamical rotational predissociation 11 

3.4.3 Adiabatic stretching (best local) expansion (ASE) 
Having discussed the situation where the angular motion is considered to be the 

slow one with respect to the motion along the VdW radial coordinate, it is of interest to 
examine the other possible situation, i.e. the fast motion along the librational 
coordinate with a relatively slow motion along the stretching coordinate. We solve, at 
each R value, the equation 

where 1 represents the librational (angular) quantum number. One begins by expanding 
the g's in a BF angular basis set and by determining the coefficients by diagonalization 

The full wavefunction for the discrete states is written down as a simple product 

ys, f(R 9 = s h ;  W S ,  l(R) (43) 

and one has to assume the adiabatic condition by saying that 

hence the radial functions are given as solutions of the equation 

ETR + U l ( R ) l @ s ,  = 's, l@s, l ( R )  (45) 

which is entirely equivalent to what was written for the angular variable in equation 
(28). Here the effective potential U l  is defined in equation (41). It is clear from its 
definition that 

Ul(R) - W ( j +  1) (46) 
R+ m 

which implies that the local, librational quantum number 1 becomes asymptotically the 
rotational quantum number of the isolated diatom. 

The usefulness of this type of adiabatic expansion is related to the degree of validity 
of equation (44), i.e. to the possibility that the angular motion of the diatomic fragment 
be largely decoupled from the stretching motion of the rart-gas atom in the complex. 
H2-Ar and HD-Ar appear as possible candidates for such behaviour (Hutson and Le 
Roy 1983), while the example that we give below pertains to a more intermediate class 
of weakly bound complexes, i.e. to those for which the internal rotation is partially 
hindered by the stretching motion of the rare-gas atom. 

3.4.4. AS plus conjiguration interaction expansion (ASCIE) 
To complete the treatments discussed in this review, we examine the case in which 

the best local angular representation, at  each fixed R value, is improved by allowing the 
full potential to couple the discrete eigenfunctions of the previous paragraph. 

The general problem is again that of writing down the matrix representation of the 
full J? of equation (3) over the AS basis of equation (43). One can then write each of 
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12 F .  A .  Gianturco et al. 

them as follows 

If one now defines the quantity 

and remembers that 

(49) 
ag, av 1 

V+ B,j2 + - ~ -= U,(R)  -U;(R)g, --gf +---12gl 
2pR2 l2 I””’ aR aR aR 4 p ~ 3  

then it is easy to show that 

The problem of evaluating matrix elements like that of equation (47) is transformed 
into the search for a suitable representation for the F‘, , ,  functions of equation (50), 
which will act on the purely radial basis employed in the expansion (43). 

3.5. Golden rule matrix elements 
As already mentioned in section 3.2 all the various approximate procedures 

discussed in sections 3.3 and 3.4 are ultimately employed to evaluate the ‘golden rule’ 
matrix elements ofequation (12). To better illustrate this point, we willdescribe here the 
evaluation of the channel halfwidths for the angular adiabatic expansion (AAE) of 
section 3.4.1. 

If one employs the familiar Infinite Order Sudden (10s) approximation to obtain 
the full continuum functions for the breaking-up of the VdW complex (Secrest 1975), 
one can write down the expression 

Yj,R,&,i(R ~ = Q ~ , T ( R Y ) ( R  ~ I J M ~ Q )  (51) 
where the 4 are energy normalized solutions for a given choice of arbitrary angular 
momentum 5 of the following y-dependent equation 

CTR + w>Y)l4&,s=o(R; Y)=&4z , f=o(R;Y)  (52) 

where the l = O  case has been considered for simplicity and where E gives the kinetic 
energy of the fragments for the case where the energy of the continuum state is given ‘on 
the energy shell’ by the usual expression 

E( j )  = E +Be - j ( j  + 1) (53) 

The R P  halfwidth associated to a metastable state of the complex, labelled by the 
discrete quantum numbers Is, l ) ,  can now be estimated by the expression 
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Dynamical rotational predissociation 13 

where each of the discrete-continuum (d+c) coupling matrix elements is given by 

C Z j a  = < ~ j n , E , l I ~ ' I Y s .  i >  (55)  

and the involved wavefunctions are those defined by equations (51) and (25), 
respectively. The additional coupling operator includes the effects of fragment 
rotational and relative orbital angular momentum operators. Its explicit expression 
has been worked out in detail by us (Villarreal et al. 1987 b) and will not be repeated 
here. The final expression for the halfwidths becomes more complicated when the 
AACIE model is employed, since we now have (as can be seen from equation (32) and 
following) 

where 

u$=;Q= < y j C 2 , z , l \ x ' l y k )  

=C~$, ,<~~~,E,TI~IY, , I )  (57) 
s, 1 

but now the continuous energy at the resonance, E, is given by E k - B e j ( j +  1) and 
therefore the summation on the r.h.s. of equation (57) is only apparently a linear 
combination of the matrix elements of equation (554, as none of the Es, of equation (28) 
even coincides with the E,  of equation (33). 

4. A computational example 
The interaction of heavy rare gases like argon with diatomic targets corresponding 

to many electron systems (e.g. beyond the H, example) constitutes an interesting case 
study for the dynamical couplings that we have discussed in the previous sections. For 
the Ar-N, case, recent calculations of bound and metastable states of the complex have 
been carried out by Brocks and Van der Avoird (1987) by an exansion in a basis set 
which consists of products of free rotor angular functions and radial basis functions. 
The expansion parameters were then variationally optimized by a method already 
employed for other systems (Tennyson and Van der Avoird 1980). They adopted an 
approximate procedure to evaluate resonance positions and also obtained from it the 
corresponding widths of the metastable states by a model calculation of the 
corresponding phase shifts around the energy positions obtained by the first step of 
calculations (Brocks 1987, Grabenstetter and Le Roy 1979). Since they employed the 
same anisotropic potential that we discussed in section 2, it would be interesting to see 
how well our present methods compare with the more time-consuming calculations 
employed by the above authors. 

Table 1 presents the bound states obtained with the rotational diabatic and 
adiabatic methods discussed in the previous sections. In both cases the configuration 
interaction correction is also employed. One sees that for the example chosen, as it 
supports a fair number of bound states, the correction to the eigenvalues introduced by 
the CI calculations is considerable, as opposed to what was found in lighter systems 
with fewer bond states for the complex and for which two or three quanta of internal 
rotation were sufficient to eliminate all bound states (Villarreal et al. 1987 b). The 
calculations labelled BVdA (Brocks and Van der Avoird 1987) show fairly good 
agreement with the AACI results, although they are only referring to j = O  internal 
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14 F.  A.  Gianturco et al. 

Table 1. Bound states and associated rotor states for the Ar-N, VdW complex. Total angular 
momentum J=O and even rotor states only. The present results are labelled by the 
acronyms discussed in the main text. The energy scale is in cm-’. 

DRE/j DRCIEij AAEIj AACIE BVdA-f 

-71.20 
- 52.77 
- 46.8 1 
-30.10 
- 28.66 
- 24.25 
- 15.56 
- 13.33 
- 6.95 
- 2-23 
- 1.56 
- 1.37 
- 0.34 

0 
2 
0 
2 
0 
4 
0 
2 
0 
0 
4 
2 
0 

- 76.72 
- 55.04 
- 46.97 
- 35.30 
- 28.35 
-21.98 
- 17‘98 
- 11.69 
- 7.25 
-4.76 
- 2.50 
- 0.45 

0 
2 
0 
2 
0 
4 
0 
2 
0 
2 
0 
0 

-78.33 
- 54.52 
-51.53 
-31.68 
-31.55 
- 27.48 
- 17.35 
- 14.62 
- 7.88 
- 3.89 
- 2.37 
- 

0 
2 
0 
0 
2 
4 
0 
2 
0 
4 
2 

- 78.001 
- 56.255 
- 48.363 
- 37.265 
- 29.382 
- 23.287 
- 19.900 
- 12.387 
- 9’724 
- 6.077 
- 2.927 
- 0.704 

- 77.95 
-56’17 
- 

-37.17 

- 

- 19.74 

- 9.53 

- 2.8 1 
- 0.64 

- 

- 

From Brocks and Van der Avoird (1987). 

states (or, rather to 1 = O  librational states) and therefore cannot be easily related to a CI 
calculation. The present methods also indicate that a free-rotor picture of N,, 
rotationally excited to j =  4, is still giving rise to bond complexes. 

When one carries out a rigorous dynamical calculation, the S-matrix elements 
indicate the presence of isolated narrow resonances, as discussed in section 3.1, 
equation (11). A convenient way of expressing it is given by the familiar equation 
(Taylor 1972) 

E - E,  + i r /2  

where S,, is the background S-matrix and R,, r are respectively the position and width 
ofa given resonance. A is a complex matrix related to the gim quantities of equation (1 1)  
(Taylor 1972). 

One can now define two energy-dependent, real functions given by 

N 

k = l  

where Re@) and Im(z) are respectively the real and imaginary part of the complex 
quantity z. Since both S and Sbg are Vnitary matrices, The R and T functions assume a 
simple lorentzian form (Delgardo-Barrio et al. 1985) 
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Dynamical rotational predissociation 15 

where N is the number of open channels at the considered energy E .  It follows that, for 
E=E,  

R(E,) = N - 2 

and 

while, for 

E= E, f r/2 

R(E, & r /2)= N - 1 

and T (E, r/2) is an extremum. An example of this behaviour is given in the figure, 
where the R and T functions are plotted for the case of ortho-N, (addj  values) at J = 0 
and over a range of energies where three isolated resonances are visible. The CC 
calculations were carried.out by including rotational states up to j =  11 and satisfactory 
numerical convergence was achieved on the S-matrix elements. The S,,-matrix was 
obtained from an artificial channel calculation in which the closed channel which 
supports the resonance in question is omitted. 

The various thresholds for the onset of continuum states of the system occur here at  
3*997cm-'forthej=l state,at23.982cmP' for j=3  stateandat 39.955cmP'forj=5 

L 

J = 0 (+> 

\ \ 

\ II 

4.0 8.0 12.0 16.0 20.0 24.0 

_. r e a l  p a r t  

_ - -  imaginary p a r t  

E n e r g y  ( crn-l) 

Computed mixed-S matrix elements (real part R and imaginary part T) for the Ar-N, complex 
at energies below the j = 3  rotational threshold, for the J=O and ortho-nitrogen cases. 
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16 F .  A .  Gianturco et al. 

state of the isolated N ,  rotor. In the figure one therefore sees that R(E)  goes to - 1 for 
the first resonance at - 4 cm- just above the first threshold, while T(E) goes to zero, as 
expected from equation (61). Both the following resonances are still below the second 

. threshold and therefore the two functions behave exactly the same way as for the first 
resonance. The corresponding zeros of R(E) are also telling us about the width of each 
resonance, as indicated by equation (62). All the cases in question correspond to a 
physical situation in which the N, fragment, after the RP process, is left in the j = 0 state, 
and the energy balance with the A j =  1 energy transfer from j =  1 is provided by the 
relative translational energy of the fragments. 

Table 2 shows the resonant states calculated with the various models discussed in 
this review and compares them with the exact CC results obtained as explained above. 
One sees that the models which include CI agree better with the exact results, as also 
happens with the results of Brocks and Van der Avoird (1987). On the other hand, none 
of the approximate approaches manages to reproduce exactly the predicted widths and 
positions of the CC calculations. This indicates that dynamical coupling in the chosen 
example requires the full presence of both bound-bound and bound-continuum CI as 
is done via the ‘half-collision’ approach of the exact calculations. It is, however, 
important to point out that angular adiabatic calculations are coming within 2-3% of 
the exact resonant energies and therefore provide, at little cost, a useful mapping of 
metastable states which can than be more accurately studied with the full dynamical 
coupling of the scattering equations approach. 

Table 2. Metastable states and resonance partial widths for the Ar-N, complex. J = 0 and even 
rotor states only. The acronym of each column heading is explained in the main text. The 
j =  2 and 4 thresholds are 11.99 cm respectively. All quantities are in 
cm-’. 

and 39.97 cm 

DREjr  

6.32 1.83 
10.38 084 
11.35 0.19 

- -  
1520 3.96 
21.06 0.03 
27.14 3.02 
34.75 1.86 
38-69 0.82 
39.99 0.14 

DRCIEjr 

2.71 0.35 
7.39 1.25 

10.13 0.34 
11.74 0.01 

15.69 4.26 
22.67 0.26 
28.33 4.18 
34.36 1.51 
38.33 1.28 

_ -  

39.92 - 

AACIE BVdAjrf 

0.64 1.5 0 3  
4.9 1 1.50 0.98 
8.88 7.90 1.6 

11.22 11.2 0.33 
1 1.93 

12.7 1.7 
21.82 22.60 038 
25.82 25.90 3.5 
33.10 32.30 1.4 
37.75 37.80 0.64 
38.71 40.0 0.19 
39.75 

- _  
- 

Exactjr 

1.30 0.06 
5.30 2.9 
7.88 0.76 

11.00 0.13 
11.96 0.022 

22.20 0.20 
25.56 2.97 
32.30 1.11 
37.43 0.34 
39.67 0.082 

_ _  

t From Brocks and Van der Avoird (1987). 
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